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Received: 24 September 2002 / Revised version: 30 October 2002 /
Published online: 20 December 2002 – c© Springer-Verlag / Società Italiana di Fisica 2002

Abstract. Any Monte Carlo event generator in which only initial state radiation (ISR) is implemented,
or ISR is simulated independently of the final state radiation (FSR), may feature too many photons with
large transverse momenta, which deform the topology of events and result in too strong an overall energy
loss due to ISR. This overproduction of ISR photons happens in the presence of the final state particle
close to the beam particle of the same electric charge. It is often said that the lack of the electric charge
screening effect between ISR and FSR is responsible for the above pathology in ISR. We present an elegant
approximate method of curing the above problem, without actually reinstalling FSR. The method provides
theoretical predictions of modest precision: ≤ 2%. It is, however, sufficient for the current 1W data analysis
at the LEP2 collider. Contrary to alternative methods implemented in other MC programs, our method
works for the ISR multiphotons with finite pT. Although this method is not an exact implementation of
the complete/exact ISR, FSR and their interference, it is very closely modelled on it. We present a variety
of numerical results obtained with the newest version of the KoralW Monte Carlo, in which this method
is already implemented.

1 Introduction

In the Monte Carlo programs for e−e+ colliders, one has
to model initial state radiation (ISR) as precisely as possi-
ble. For some processes where the precision requirements
are moderate, such as the single-W production process
at LEP, where the combined LEP2 precision is estimated
at ∼ 7% [1] it is sufficient to implement ISR in the leading-
logarithmic (LL) approximation. This can be done by
modeling ISR in the collinear, pT = 0, approximation (see
for instance [2–4]), by “unfolding” the strictly collinear
structure functions [5] or using the so-called “parton-
shower” technique as in [6] (recently employed also in [7]),
or the Yennie–Frautschi–Suura (YFS) exclusive exponen-
tiation employed in [8]; see [9] for a more complete list of
references. In all of the above MC programs the final state
radiation (FSR) from charged final particles is either not
modelled at all or simulated completely independently of
the ISR, which is the general spirit of the LL approxi-
mation. This may be problematic if one of the final state
charged particles gets close to the beam particle with the
same electric charge. In such a case ISR photon emission is
damped, because of the well-known electric charge screen-
ing effect (ECS), and the total energy distribution of the
ISR photons gets softer. In the terminology of the LL it is

described as the “decrease of the LL scale” from s, which
is the square of the center-of-mass system (CMS) energy,
to t, which is the four-momentum transfer (squared) from
the beam to the nearby particle of the same charge.

Let us stress that in the calculations based from the
beginning on the YFS exclusive exponentiation, as in the
BHWIDE [10] or KKMC [11,12] MC programs, the ECS
and correct LL scale are automatically built in to an infi-
nite order, hence there is no need to reinstall them. The
ECS and correct LL scale in exclusive exponentiation are
direct manifestations of the interference effects between
ISR and FSR. Hence, they are also often described as “co-
herence effects”.

As already said, owing to the lack of ECS in the Monte
Carlo calculation in which ISR is modelled using the s
scale, one may encounter two pathologies:

(a) overproduction of photons with large transverse mo-
menta, which results in the noticeable deformation of the
topology of events, and
(b) too strong an overall energy loss due to ISR. In partic-
ular this happens in the single-W (1W ) production pro-
cess at LEP2, when modelled by the MC program Ko-
ralW [13–15]. The aim of this work is to invent a simple
method of correcting for ECS, and curing the above defi-
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ciencies, without the need of generating FSR in the MC1.
The method is quite general, although its most immedi-
ate application is improving the theoretical prediction for
the 1W production process at LEP2 to the ≤ 2% pre-
cision level. Contrary to alternative curing methods im-
plemented in the other MC programs [3,6], our method
works for finite-pT ISR multiphoton distributions. It is
not an “ad hoc” method because its development is based
on the consideration of the exact YFS exclusive exponen-
tiation for ISR, FSR and their interference [12]. We note
that [4] presents the inclusive YFS exponentiated struc-
ture function treatment of the ECS effect.

After defining our method, we shall also present a va-
riety of numerical results exploiting the newest version of
the KoralW Monte Carlo, in which this method of intro-
ducing ECS is already implemented.

The electric charge screening effect together with
change of the LL scale for the multiphoton emission are
described in the following section. The proposed method
is practical because
(1) the effects are introduced by means of a simple well-
behaving Monte Carlo weight,
(2) it does not require generation of the additional photons
in the final state (FSR),
(3) it provides an ISR precision good enough for single-W
LEP2 data analysis, that is ≤ 2%.

The construction of the ECS weight is first described in
Sect. 1.2, using a simple example of the process µ−µ+ →
µ−µ+, for which the ECS effect and the method of its
introduction in the ISR is illustrated with the help of
many examples of the photon distributions. This method
is later generalized to the e−e+ → 4f process in Sect. 2,
where also the relevant correction to the virtual form fac-
tor (overall normalization) is defined. Numerical cross-
checks and final discussion are provided in Sect. 4.

1.1 Electric charge screening

The electric charge screening effect is a well-known phe-
nomenon of suppression of the photon emission from any
subset of compensating charges (charges adding to zero or
to small total charge), which are close in the momentum
phase space, i.e. which have small effective mass, small
angular distance, etc. One should exclude from the con-
sideration charges/particles that are well time-separated,
i.e. from the decay and production parts of the narrow
resonance production/decay processes. A good example
of a subset of compensating charges is for instance a fast-
moving light µ+µ− pair – a “dipole” of compensating
charges. For the compensation considerations, electric
charges of every initial state particle should be assigned

1 An obviously better alternative is to implement YFS exclu-
sive exponentiation for the entire e−e+ → 4f process. This is
however too much work to be completed before the end of the
LEP2 data analysis. For the e−e+ → WW → 4f subprocess,
where precision requirements are ∼ 0.5%, the ECS/coherence
effects between ISR and FSR (W decays) are strongly sup-
pressed

an additional minus sign with respect to particle charges
in the final state (much as in the definition of the four-
momentum transfer). For instance in the low-angle
Bhabha (LABH) process, the initial state e−

i and the final
state e−

f form together a “dipole” of compensating charges
and the ECS takes place, which means that the emission of
photons with an angle greater than the angular size of the
(e−

i , e−
f ) compensating system gets strongly suppressed.

The change of the leading-logarithmic scale is just an-
other face of the same ECS. For ISR taken alone, the LL
parameter Le(s) = 2(α/π) ln(s/m2

e), which controls the
strength of the loss of the total energy due to ISR, is de-
fined for the so-called LL energy scale s1/2, being just the
total center-of-mass system (CMS) energy. Actually this
so-called big logarithm Le(s) comes from the integral over
the photon angle Le(s) � ∫ π

m2/s
dϑ/ϑ. Taking into account

the interference between ISR and FSR introduces ECS.
This becomes important when, for instance, one of the fi-
nal state e−’s approaches the initial beam e− by an angle
θ. Then, the photon angular distribution gets suppressed
(i.e. loses the 1/ϑ dependence) for ϑ > θ. Hence Le(s) gets
replaced in the so-called LL ISR structure functions by a
smaller Le(t) � ∫ |t|/s

m2/s
dϑ/ϑ. Obviously, change of the LL

scale is a numerically important effect when |t| � s. Such
is the case of the 1W production, where at least one of the
final state electrons gets inside the beam pipe due to the
strong peak in its scattering angle (because of t-channel
photon exchange in the Born distribution).

All the above discussion was for real photons, and in
fact the whole ECS can be viewed as an almost completely
classical phenomenon. The real photon angular distribu-
tion, in the soft-limit approximation, is just the square of
the classical electric current vector. Quantum-mechanical
virtual corrections merely correct the overall normaliza-
tion, cancelling properly infrared (IR) singularities in the
photon energy distribution. (The IR-divergent part of the
exponentiated virtual correction has necessarily Le(t) as
a coefficient.)

1.2 The µ−µ+ → µ−µ+ toy example

As already indicated, in our method of implementing the
ECS effect in ISR we do not include explicit FSR; however,
we take as a guide the YFS model in which ISR, FSR and
their interference are included. In this section we examine
carefully the ECS effect for a single real photon in such
a complete model, proposing at the end of the exercise a
simple correcting weight introducing the ECS effect in the
pure ISR case.

The above will be done by carefully scrutinizing sev-
eral variants of the angular photon distributions of a “toy
process”:

µ−(pa) + µ+(pb) → µ−(pc) + µ+(pd) + γ(k), (1)

a muonic analogue of the Bhabha process2.
2 We use the µ−µ+ → µ−µ+ process instead of the Bhabha

one because the small electron mass would hinder the visibility
of some features of the presented plots
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In the soft photon limit, the final state distribution
is equal to the Born distribution times the complete soft
photon factor

S̃abcd = − α

4π2

(
pa

kpa
− pb

kpb
− pc

kpc
+

pd

kpd

)2

, (2)

the same factor which is a basic element in the YFS ex-
ponentiation [16]. In order to see the ECS effect we com-
pare the above complete S̃abcd with the incoherent sum
S̃ab + S̃cd of the ISR and FSR contributions, neglecting
the interference IFI = ISR ⊗ FSR, where

S̃ab = − α

4π2

(
pa

kpa
− pb

kpb

)2

,

S̃cd = − α

4π2

(
pc

kpc
− pd

kpd

)2

. (3)

We choose a relatively small scattering angle θab. In Fig. 1
we plot S̃ab + S̃cd and complete S̃abcd side by side, as a
function of the photon polar variables (cos ϑ, ϕ). In order
to see very clearly the structure of the distribution over
the entire unit sphere, we choose (cos ϑ, ϕ) with respect
to the z-axis pointing perpendicularly to the beam axis
(beams are along the x-axis). We choose s1/2 = 5 GeV, at
which muons are already very relativistic and the muon
scattering angle is 20◦ – small enough to see the ECS ef-
fect. The four peaks of the photon emission intensity in
Fig. 1 are centered around directions of the four charged
muons. The ECS effect is seen as a clear suppression of
the photon emission intensity beyond the two dipole peaks
(a, c) and (b, d). The first dipole is for the incoming and
outgoing µ− and the second one is for the incoming and
outgoing µ+. In Fig. 1 the two t-channel dipole peaks are
much sharper for the complete S̃abcd than for the inco-
herent superposition of ISR and FSR, S̃ab + S̃cd. The top
part of the dipole peaks is worth inspection, see Fig. 2, as it
features the well-known “helicity zeros” as deep “craters”,
exactly in the direction of the emitter charge. The craters
are of an angular size mµ/Ebeam and will shrink to a neg-
ligible size at very high energies. The ECS effect is also
very clearly seen again in Fig. 2, as a strong sharpening of
the photon radiation intensity beyond the dipole double
peak.

Is the radiation pattern of S̃abcd, which we see in Fig. 2,
specific to a t-channel character of the process? Not really.
The radiation pattern of the real µ−µ+ pair with effective
mass equal to |t|1/2 and boosted to the total energy of
5 GeV is completely undistinguishable from what we see
in Fig. 2. The other way of describing it is that S̃abcd is
extremely well approximated by the incoherent sum of
S̃ac + S̃bd. Let us stress that S̃ac and S̃bd look very sim-
ple and natural in the two Breit frames (rest frames of
(a, c) and (b, d)) and the non-trivial shape of the photon
intensity in Fig. 2 is the result of the trivial Lorentz boost
from the Breit to the CMS frame. (In a sense, the non-
trivial shape plotted in Fig. 2 is the “fault” of the observer
himself, who has chosen to examine it from an “unnatu-
ral” reference frame.) The other interesting observation is

that if we have plotted S̃ac + S̃bd in Figs. 1 and 2 then
we will have found that it is completely undistinguish-
able from the S̃abcd

3. In order to see any noticeable dif-
ference between these two distributions, we have to go to
the backward scattering angle. We do this in Fig. 3, where
we compare these two emission distributions for the scat-
tering angle θ = 135◦. The peaking structure is the same;
however, for S̃abcd we see a rich interference pattern, espe-
cially for photons far away from the four charges. At this
large scattering angle we have checked that the S̃ac + S̃bd

and S̃ab + S̃cd distributions look almost identical.

1.3 ECS weight – preliminaries

Having seen in Figs. 1 and 2 what the coherence ECS ef-
fect is, let us now ask the important practical question:
Provided that, as in KoralW, we have only ISR, could we
modify the ISR distribution in such a way that we get the
same sharpening of the photon angular distribution, as in
the real world of the coherent S̃abcd? Our proposal for the
correcting weight is the following:

WECS(k) =
S̃abcd(k)

S̃ab(k) + S̃cd(k)
, (4)

and we are going to show that it does what we want. Let
us examine the corrected ISR distribution

S̃ab(k)WECS(k). (5)

First, we notice that WECS(k) � 1 (apart from the unim-
portant helicity zero) close to the angular position of the
outgoing particles, so it does not try to re-install the FSR,
and the corresponding MC weight should not have an in-
convenient long tail. Then, what is most important, WECS
really cuts off very strongly photon emission at angles
greater than the scattering angle θac or θbd. This is seen
very clearly in Fig. 4, where the “angular size” of the cor-
rected ISR emission pattern shrinks by a factor of ∼ 3
with respect to the original one. This is clearly visible
even for our moderately small scattering angle θac = 20◦.
In the real KoralW application we shall, of course, apply
the product of the WECS(k) over all ISR photons. The
overall normalization will also be corrected by means of
correcting the exponential virtual+real form factor, which
also compensates for the IR divergence of the average ECS
weight 〈∏i WECS(ki)〉. The qualitative discussion of the
action of the ECS weight will be given in Sect. 4.1.

How does one justify the fact that we apply a correct-
ing weight, which includes ISR⊗FSR interference, without
generating FSR in the MC? A quite general answer is that
the above can be understood as a procedure of integrat-
ing analytically over the real FSR photons and including
the result of the integration in the normalization4. Such a

3 This is why the BHWIDE MC program, which models
S̃ac + S̃bd at the low MC level, is so efficient in modelling the
multiphoton radiation in the complete wide-angle Bhabha pro-
cess

4 The FSR photons can be added later on; however, care
must be taken to get the ECS for the FSR in a similar way as
for ISR
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Fig. 1. Photon angular distribution in µ−µ+ → µ−µ+γ scattering at s1/2 = 5 GeV and muon scattering angle of 20◦. The
difference between left- and right-hand side plots illustrates the electric charge screening effect
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Fig. 2. Photon angular distribution. All is the same as in Fig. 1. Range restricted to the vicinity of an (a,c) dipole. “Craters”
are “helicity zeros”

procedure can be very close to experimental reality, pro-
vided the FSR photons are combined with the outgoing
charged particles. From the theoretical point of view the
above procedure is quite common in the world of the LL
approximation. For example, a similar solution is used to
install interference between different branches of FSR in
the PHOTOS Monte Carlo [17]. As we shall see later on,
our procedure not only makes sense in the LL approxima-
tion, but also features the precise IR cancellations and has
the expected LL behavior.

2 ECS correction weight for the 4f process

We have already explained what the ECS effect is, and
sketched how to introduce it in an approximate way in the
ISR Monte Carlo, with the help of the correcting weight
WECS. All that was done for the 2f final state in a rather
qualitative way. In the following we define the analogous
correcting procedure for the four-fermion (4f) final state;
we shall also present several quantitative tests; see Sect. 4.

2.1 Real emission part of WECS

Let us start by defining the real emission part of the WECS
for the 4f process e−e+ → fc(pc)+f̄d(pd)+fe(pe)+f̄f (pf ).
For this process the complete soft photon emission factor
reads

S̃(k) =
1
2

∑
i,j=a,b,...,f

i�=j

S̃ij(k),

S̃ij(k) = Zij
α

4π2

(
pi

kpi
− pj

kpj

)2

, (6)

where Zij = ZiZjθiθj , Zi is the sign of the ith charge,
and θi = + (−) if particle i is outgoing (incoming). The
natural extension of the weight of (4) would be

W real
ECS =

S̃(k)
S̃ab(k) + S̃cdef (k)

, (7)

where S̃cdef is defined as in (6), restricting summation to
the FSR part, i, j = c, d, e, f . The above weight could be
implemented in the MC without much problem; however,
it would complicate the construction of the accompanying
normalization weight W norm

ECS described in the next section.
We have noticed, however, that since we are working in

the LL framework, we can simplify the weight of (7), and
effectively replace it with the variant of the 2f weight of
(4). How is this possible? One has to keep in mind that our
aim is to deal with the situation in which one of the final
state particles (electrons) is close to the beam or two par-
ticles (electrons/positrons) are close to the beams. Let us
call the above two situations (following a long established
terminology) singly- and doubly-peripheral scattering.

In the singly-peripheral (SP) situation we expect ECS
in only one hemisphere. Photons will be emitted inside a
narrowly collimated t-channel dipole close to the beam;
there will be a gap in the photon angular distribution ex-
tending from the dipole down to the nearest particle in
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Fig. 3. Photon radiation in backward scattering, θ = 135◦

the “central region”5 out of the remaining three final parti-
cles. In the doubly-peripheral (DP) configuration, we shall
have two narrowly collimated t-channel dipoles close to the
beams and two gaps down to the central region. In fact
the two gaps will join together in the central region. This
gap structure will be clearly seen in the numerical results
in Sect. 4, where we shall plot the photon distribution in
the rapidity variable y = − ln tan(ϑγ/2).

Now, if our main aim is to reproduce one or two of the
ECS gaps in ISR radiation, and if we restrict ourselves
to the LL approximation, then it does not matter how
many particles there are in the central region. What really
matters is how many (one for the SP and two for the DP
case) particles close to the beams there are, and at which
angles those closest to the beams (members of t-channel
dipoles) are. Consequently, in the LL approximation, for
the purpose of reproducing ECS, it is perfectly safe to
replace the four final particles by just two (especially that
there are only two beams). In the DP case, the choice
is clear: we take those two particles closest to the beams
and properly match the beam charges (forming t-channel
dipoles with the beams), ignoring the other two (charge

5 By central region we understand angles greater than, say,
10◦ from both beams

conservation is of course respected). In the SP case one
charge is again the member of the t-channel dipole and
another charge we place anywhere in the central regions;
it may be tied up with one of the three remaining particles
or not – it does not matter.

The two final “effective final state particles” entering
the ECS weight we shall denote C and D, and the real
emission part of our ECS weight we define as follows:

W real
ECS =

∏
i

wR(ki),

wR(k) (8)

= S̃ab(k) + S̃CD(k) + S̃aC(k) + S̃bD(k) + S̃aD(k) + S̃bC(k)
S̃ab(k) + S̃CD(k)

,

where the index i runs over all ISR photons. The above
formula, apart from notation, is identical to that of (4).
Also, in the numerator we have used the algebraic identity
of [16] in order to decompose S̃abCD into six dipole-type
contributions.

In practice, the final state fermions C and D in (8)
are determined by the kinematics of the final state (FS).
In the case of the so-called “single-W” (1W ) final state,
in which we are mainly interested here, we check whether
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Fig. 4. Photon angular distribution in µ−µ+ → µ−µ+γ scattering at s1/2 = 5 GeV and muon scattering angle of 20◦ for the
case of ISR only. The difference between left- and right-hand side plots shows the effect of the ECS correction weight

one final state electron (positron) is lost in the beam pipe
and the decay products of the 1W are visible outside the
beam pipe. In such a case we identify the in-beam-pipe
particle as one of the effective particles C or D (according
to its charge). As for the other one, there is freedom of its
choice, as explained above. Since all other FS fermions are
at large angles (central region) it should not matter which
one we pick. In fact we do something even more primitive:
we assign the second remaining C or D as directed per-
pendicularly to the beam pipe. In the second, DP case of
the e−e+ff̄ final state with both e−e+ lost in the beam
pipe, we assign C and D to e− and e+, of course.

Let us summarize the main points on the weight of (8),
as implemented in KoralW.

(1) The only purpose of the weight W real
ECS is to restore the

ECS effect due to ISR ⊗ FSR interference.
(2) We do not aim at re-creating the FSR. This would be
formally possible with a similar weight; however, it would
lead to an awful weight distribution and a non-convergent
MC calculation.
(3) We get W real

ECS → 1 for photons collinear with the FS ef-
fective fermions C and D. This ensures a very good weight
distribution.

(4) The FSR can be treated separately, either inclusively
(calorimetric acceptance) or exclusively, generated with
the help of PHOTOS6.

Finally, we notice that in the ECS weight we may insert
massless four-momenta without any problem – in practice
we shall use the massless limit of (6):

S̃ij(k) → S̃ij(k) = Zij
α

4π2

−2pipj

(kpi)(kpj)
. (9)

2.2 Virtual + soft correction to normalization

The average of the real emission weight 〈W real
ECS〉 taken

alone is infrared (IR)-divergent as ∼ ln ε, where ε defines
the infrared cut Eγ > εEbeam on the photon momentum
in the CMS. In the YFS exponentiation of ISR in KoralW,
based on [18], the IR cancellations occur numerically be-
tween the real soft-photon factors

∏
i S̃(ki) and the YFS

form factor FYFS = exp(2αB + B̃(ε)) (contrary to typi-
cal parton-shower MCs, where they are built-in features

6 Care has to be taken to implement ECS for FSR, if neces-
sary.
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of the MC algorithm). Since it is well known how these
IR cancellations do occur [18,12] it is also possible to cal-
culate the IR violation of the 〈W real

ECS〉, and to correct for
the above divergence precisely. At the same time, we shall
also correct for the change of the LL scale in the virtual
part of the YFS form factor and the non-infrared LL cor-
rections to the O(α). As a result, the corrected total cross
section will become again independent of the IR param-
eter ε, as the original one. This we shall check numeri-
cally. Again, all of this procedure should be regarded as
a “shortcut” with respect to the full YFS exponentiation
with ISR+FSR including ISR⊗FSR interference, keeping
in mind that our precision tag is limited to 2%, and that
simplicity of the method is also our high priority.

The correction to the overall normalization, which cor-
rects for the IR divergence exactly, and introduces proper
LL scale in the virtual LL correction, reads as follows:

W norm
ECS = exp

(
3
4

(γ̄t − γs)
)

exp(∆U(ε)),

∆U(ε) = U(ε) − UR(ε), U(ε) =

√
s∫

ε
√

s/2

d3k

k0 S̃ab(k),

UR(ε) =

√
s∫

ε
√

s/2

d3k

k0 S̃ab(k)wR(k). (10)

The factor exp(∆U) cancels exactly the ε dependence and
compensates approximately for the normalization change
due to the 〈W real

ECS〉 weight. The proof and details of the
construction of exp(∆U) are given in Appendix A.

The factor exp((3/4)(γ̄t −γs)) provides the correct LL
scale in the virtual part of the form factor. The γs is de-
fined as γs = 2(α/π)(log(s/m2

e) − 1). The scale of the γ̄t

depends on the number of final state particles that effec-
tively contribute to the interference weight (8). When only
one line is modified, say e−, we have γ̄t = (1/2)(γs +γt−),
where γt− = 2(α/π)(log(|t−|/m2

e) − 1) and t− denotes
the square of the four-momentum transfer from the e−
line. When both e− and e+ lines are modified, we get
γ̄t = (1/2)(γt− + γt+).

The triple integral of (10) has to be computed for every
generated event. It is therefore of high importance to be
able to do it very fast, so that the Monte Carlo generation
is not slowed down too much. We have not attempted
to compute it completely in an analytic way. Instead, we
perform two out of three integrations analytically and the
remaining one numerically. Such a procedure proved to be
fast enough. We show in Appendix B how to reduce the
integral in (10) to a simple one-dimensional integral.

3 Running QED coupling constant

In the practical applications, a more precise prediction
for the 1W -type processes requires also the inclusion of
the effect of the running QED coupling constant in the
e− (e+) vertex from the value at M2

W scale to the actual

small transfer value t− (t+). We include this effect in the
form of an overall factor that multiplies the whole matrix
element squared. It is activated only for the electron or
positron line (in the Feynman diagram) for which the ECS
corrective weight is actually applied. In the SP case of one
e± line, the correcting weight reads

WRun = W±
Run =

(
α(t±)
αGµ

)2

, (11)

where αGµ
is the value of coupling constant in the Gµ

scheme7. For the DP case (two lines) we put

WRun = W−
RunW+

Run. (12)

The precision of such a naive solution is, in most cases
(including leptonic final states), better than 2%, and for
semileptonic final states even better than 1%, as discussed
at length in [19].

4 Numerical results

In this section we check very carefully that our ECS weight

WECS = W norm
ECS W real

ECS WRun (13)

introduces the ECS effects in the photon angular distri-
bution, the proper LL scale in the total energy loss due to
ISR photons, and corrects the QED coupling constant for
the hard process.

4.1 General consistency tests

In this subsection we present some numerical results that
demonstrate the action of the weight emulating the ECS
effect.

The first test, necessary for consistency, shows that
the cross section is independent of the dummy IR cut-
off ε of (10). In Table 1 we show the values of the total
cross sections for the eν̄eud̄-channel for a few values of the
dummy IR cut-off ε. The energy is set to 190 GeV, and
the cut-off on the maximal angle of the scattered electron
is 2.5◦ with respect to the electron beam in the effective
CMS frame of outgoing particles. One can see that, within
the statistical errors, there is indeed no dependence on the
ε.

Having checked the self-consistency of the emulation,
we can now proceed to demonstrate the main result of
this work – the ECS suppression of the transverse radia-
tion. In Fig. 5 we show (in the doubly-logarithmic scale)
the differential distributions dσ/dy with (red dots) and
without (blue open squares) the correction weight for the
ECS effect for the e+e−ss̄-channel. The angles of scat-
tered electron and positron are set to be between 2 and

7 If any scheme other than Gµ is used in KoralW, the pro-
gram will report a conflict and stop at this point
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Table 1. Value of the total cross section for the eν̄eud̄ final state, for various values of the
dummy IR cut-off εIR

ε 10−3 10−4 10−5 10−6 10−8 10−9 10−10

σ 0.09773 0.09757 0.09755 0.09752 0.09762 0.09737 0.09759
[pb] ± 0.00020 ± 0.00022 ± 0.00010 ± 0.00019 ± 0.00019 ± 0.00020 ± 0.00011
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Fig. 5. log10 of dσ/d log10 tan(θγ/2)
with (red dots) and without (blue open
squares) the ECS correction, arbitrary
units. In boxes the values of the fits are
shown
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Fig. 6. log10 of dσ/d log10 tan(θγ/2)
with the ECS correction for eνeud̄ (red
dots) and e+e−ss̄ (blue open squares),
arbitrary units

0.2◦ with respect to the beam line (the double “ice-cream-
cone” configuration around the beam line) in the labora-
tory frame. The distribution is obtained by summing over
all photons of a given event and is normalized to arbitrary
units. The quantity y = − log10 tan(θγ/2) is proportional
to the (pseudo)rapidity of the photon.

The scattering cone of electron (positron) corresponds,
in the y scale, to the values from 1.76 to 2.76 (−1.76
to −2.76) and are marked in the plot with blue shadow
bands. In the figure one can clearly see the ECS suppres-
sion between these bands. The spectrum for photon emis-
sion outside the area (i.e. inside the e− and e+ cones)
remains flat and unchanged. Between the bands (i.e. out-

side the e− and e+ cones) the suppression is clearly visi-
ble. We have fitted the suppressed spectrum with straight
lines. The values of the fitted slopes are shown in the fig-
ure to be in good agreement with the values of ±2, which
means that we see the 1/θ2

γ suppression of the photons
beyond the dipole angular size, naively expected from the
“multipole expansion”.

In the next step we look into the 1W -type final state
of eν̄eud̄. This time, there is only one electron in the final
state, so we expect the suppression area to be asymmetric
– only in the forward direction. The result of the simu-
lation is shown in Fig. 6. In blue (open squares) we show
the same curve as in Fig. 5, i.e. the e−e+ss̄ case (appro-
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Fig. 7. log10 of dσ/d log10 tan(θγ/2)
with the ECS correction for eνeud̄ for
two values of cuts for electron opening
angle, arbitrary units

priately renormalized), whereas in red (dots) we present
the new eν̄eud̄ result. Shadowed bands again visualize the
location of the electron (positron) “ice-cream-cones”. For
the eν̄eud̄ case the area corresponds to the “ice-cream-
cone” between 0.2 and 0.5◦. The other end of the eν̄eud̄
suppression area is located at zero (90◦), where the fic-
titious particle is located and leaves the radiation in the
backward hemisphere unchanged. Note that the exact lo-
cation of this fictitious particle (in the area of reasonably
large angles) is irrelevant anyway, as the effect depends on
it logarithmically. The fitted lines can be used as before to
confirm the correctness of the suppression factor (slope).

Finally, in Fig. 7 we show the eν̄eud̄ process for two
different values of the half-opening angle of the electron
“ice-cream-cones”: 0.2 to 0.5◦ and 0.02 to 0.05◦. One can
see that the left (backward) edge of the suppression area
is, as expected, identical in the two cases, whereas the
right (forward) edge follows the electron opening angle
(the range of this angle is marked with shadowed bands).

Another characteristic distribution is the dσ/d log10 v
distribution, with the definition v = 1 − s′/s. As this dis-
tribution is sensitive only to the value of the transfer in
the hard scattering process, we have defined the accep-
tance cuts for this exercise to be −9 > log(t/s) > −11. In
the limit of small v (soft limit) we know from YFS expo-
nentiation that8 dσ/dv = exp(3/4γ)F (γ)γvγ−1σ((1−v)s)
where F (γ) = exp(−γCEuler)/Γ (1+γ) = 1+O(γ2). The γ
for the case of pure s-channel ISR is governed by the scale
s, i.e. γs = 2α/π(log(s/m2

e) − 1). Inclusion of the ECS
suppression leads to the replacement of the scale s → |t|,
i.e. γt = 2α/π(log(|t|/m2

e) − 1). In the case of the 1W -
type process (eν̄eud̄) this suppression happens only in the
electron line, whereas for the positron line we still retain
the scale s, so the effective γ̄t becomes γ̄t = 1/2(γs + γt).

8 The YFS exponentiation alone leads only to the exp(γ/4)
factor. The additional exp (γ/2) comes from leading-
logarithmic considerations. In the YFS scheme this factor is
supplied order by order by perturbative non-infrared correc-
tions

For the e+e− case, the suppression happens for both lines
and we have γ̄t = γt.

In Fig. 8, we show the ratio of dσ/d log10 v distribu-
tions with and without the ECS correction for the pro-
cesses e+e−ss̄ (blue open squares) and for eν̄eud̄ (red
dots). For the e+e−ss̄ process we applied an additional
cut-off of 3.5 mrad for the minimal angle of s and s̄ quarks
with respect to the beam line and we used the so-called
“extrapolation procedure” that preserves the value of
smallest transfer (see the KoralW manual [8] for details).
As follows from the above discussion, we expect to see
(in doubly-logarithmic scale) straight lines of the form
a + b log10(v) where the slope of the line should hence
be given by bth = γ̄t − γs = α/π log(t/s) and the free
coefficient by ath = 3/4(γ̄t − γs) log10(e) + log10(γ̄t/γs).
In our exercise the average value of the log(t/s) as calcu-
lated in the simulation is log(t0/s) = −9.86. This leads, at
t = t0, to the expected theoretical values of slopes of bth =
−0.023 and ath = −0.104 for eν̄eud̄ and bth = −0.046 and
ath = −0.241 for e+e−ss̄. The corresponding results of the
fits of the actual Monte Carlo simulations to straight lines,
shown in the insets in Fig. 8, are bth = −0.021±0.002 and
ath = −0.093 ± 0.005 for eν̄eud̄ and bth = −0.049 ± 0.003
and ath = −0.24 ± 0.01 for e+e−ss̄. We see agreement at
the level of one standard deviation for the e+e− case and
two standard deviations for the case of one electron. The
latter discrepancy can be a signal that our naive expecta-
tion for the slope is good only to a few percent of its value.
The value of the free coefficient is in principle sensitive to
the overall normalization factor (3/4). It is however nu-
merically dominated by a much larger log10(γ̄t/γs) term;
the actual factor of 3/4 contributes below 10%, i.e. at the
level of accuracy of the whole comparison, and is, there-
fore, inconclusive.

4.2 Predictions for the 1W process

In this subsection we present a few results of the influ-
ence of the ECS effect in KoralW on the 1W -type process
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Fig. 8. log10 of the ratio of (1/v)
(dσ/d log10 v), v = 1 − s′/s, with
and without the ECS correction for
eν̄eud̄ (red dots) and e+e−ss̄ (blue
open squares) final states

Table 2. The e+e− → e−ν̄eud̄ cross section with cuts specified in the text and with
ECS effect (C) and running QED coupling (R). The relative size of the ECS effect
and the running QED coupling effect is also shown

E [GeV] σC+R [fb] 1 − σR/σC+R [%] 1 − σC/σC+R [%] 1 − σ/σC+R [%]

190 87.11 ± 0.22 5.65 ± 0.15 −5.16 ± 0.02 0.81 ± 0.14
200 103.60 ± 0.26 5.49 ± 0.15 −5.13 ± 0.02 0.67 ± 0.15
500 807.56 ± 2.74 4.92 ± 0.21 −4.68 ± 0.02 0.51 ± 0.21

e+e− → e−ν̄eud̄. We use the following cut-offs (similar to
[9]):

(1) electron angular acceptance: cos θe ≥ 0.997,
(2) quark–antiquark invariant mass: Mqq̄ ≥ 45 GeV, and
the following setup: Gµ scheme; fixed W and Z widths;
normal (non-screened) Coulomb correction; naive QCD
correction; extrapolation procedure that fixes the small-
est transfer (KeyISR = 3); W branching ratios with mix-
ing and naive QCD correction calculated in IBA from the
CKM matrix [20]; Gµ = 1.16639 × 10−5, MZ = 91.1882
GeV, MW = 80.419 GeV, ΓZ = 2.4952 GeV, αS = 0.1185.

In Table 2 we present the values of cross sections with
the ECS effect (marked with C) and running of the QED
coupling (marked with R) for a few energies in the LEP2
and future LC energy range. In the respective columns we
show separately the changes due to the ECS effect (third
column), the running of the QED coupling (fourth col-
umn) and both corrections together (fifth column). All
changes are given in percent with respect to the corrected
cross section. One can see that the reduction of ISR due
to ECS suppression increases the cross section for all en-
ergies, consistently with the overall effect of ISR. The run-
ning of the QED coupling decreases the cross section by
roughly the same amount regardless of the energy. The
relative shifts for LEP2 energies presented in Table 2 are
in a qualitative agreement with the results of [3].

4.3 Precision of the 1W cross sections

Finally, we have to address the question of the physi-
cal precision of the above 1W cross sections. There are
two components of the error – approximations in the ECS
treatment and approximations related to the running
QED coupling and higher order EW effects.

(1) The approximations in the treatment of ECS are of the
genuine non-leading type, i.e. α/π with possible enhance-
ment factors (e.g. π2). Therefore we estimate this error to
be below 2%.
(2) Following [19], we estimate the approximation due to
the naive treatment of running the QED coupling to be at
most 2%, dominated by the leptonic channel contribution.
In some specific cases, such as the semileptonic final states,
this error can be lowered to 1% (see [19] for details).
(3) The other missing EW effects we estimate at 1%, again
following [19].

To summarize, in the new version 1.53 of KoralW,
upon adding the above contributions in quadrature, we
obtain an overall precison tag of the single-W cross sec-
tions of 3%. This number can be reduced for some specific
final state configurations, because of a smaller error con-
tribution from the running QED coupling. The precision
of the ECS implementation alone is of the order of 2%.
Such overall theoretical precision of 3% for the single-W
cross sections lies well below the expected final LEP2 ex-
perimental accuracy of ∼ 7% [1].
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5 Summary

We have shown that it is possible to improve the standard
ISR calculation in such a way that it takes into account
electric charge screening and LL scale transformation for
singly- and doubly-peripheral configuration in the produc-
tion of the 4f final states, with electron and/or positron
in the beam pipe. This is done using a relatively simple
and well-behaving MC weight. The method does not ne-
cessitate an explicit inclusion of the FSR. Although the
method is not the exact implementation of the YFS ex-
clusive exponentiation for the ISR+FSR, it is nevertheless
closely modelled upon it. The QED running coupling con-
stant for the hard process is corrected at the same time
to the correct t-channel scale. We also present a number
of numerical consistency checks and a sample prediction
for the 1W total cross section. The MC program KoralW
(in its new version 1.53) in which this method is imple-
mented is readily available for any interested user. It will
be especially useful for the final LEP2 data analysis.
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Appendix

A Virtual + soft normalization weight

In this appendix we discuss the construction of the ad hoc
normalization weight of (10) and show that it ensures in-
dependence of the cross section from the dummy infrared
cut-off ε.

Before going into details, let us stress again that we in-
troduced the ECS ansatz by hand into the pure ISR-type
MC algorithm in order to cure some low-angle-emission
pathologies. Therefore it is not the purpose of this ap-
pendix to rigorously derive the ECS ansatz from “basic
principles”. Such a rigorous introduction of the ECS re-
quires an entire reformulation of the MC algorithm, from
ISR-type to ISR ⊗ FSR-type, based on the complete YFS
theory and has already been done in other MC programs,
such as BHWIDE [10] or KKMC [11,12].

We will use the Mellin transform representation of the
MC master formula as given in Appendix A of [18]. In or-
der to establish the notation, we will, following [18], briefly
recall the relation of this representation to the standard
Monte Carlo form of [13,15,8]. Next we will show how
the real emission weight is added into the master formula
and what the matching virtual+soft compensation weight
must look like to cancel the fictitious ε dependence.

We start from the Mellin transform representation of
the master formula as given in (A1) of [18] adapted to the

four-body final state (for details we refer to [18])

σ =
∫

d4x

(2π)4

∫ 4∏
i=1

d3qi

q0
i

× exp

[
ix

(
p1 + p2 −

4∑
i=1

qi

)
+ D

]
exp(2αB + 2αB̃)

×
[
β̄

(3)
0 (pR

r , qR
s ) +

∫
d3k

k0 e−ixkβ̄
(3)
1 (pR

r , qR
s , k)

+
1
2!

∫
d3k1

k0
1

d3k2

k0
2

e−ixk1−ixk2 β̄
(3)
2 (pR

r , qR
s , k1, k2)

+
1
3!

∫
d3k1

k0
1

d3k2

k0
2

d3k3

k0
3

e−ixk1−ixk2−ixk3

× β̄
(3)
3 (pR

r , qR
s , k1, k2, k3)

]
, (14)

where

2αB̃ =
∫

d3k

k0 S̃12(k)θ(
√

s − k0),

D =
∫

d3k

k0 S̃12(k)(e−ixk − θ(
√

s − k0)). (15)

Now the dummy IR cut-off ε is introduced. Keeping in
mind that the d4x integral provides an even stronger cut-
off than θ(s1/2 −k0) and that in the small-ε limit e−ixk →
1, one can rearrange the exponents

D + 2αB̃ = D′ + B̃(ε),

B̃(ε) =
∫

d3k

k0 S̃12(k)θ
(

ε

√
s

2
− k0

)
, (16)

D′ =
∫

d3k

k0 S̃12(k)e−ixkθ(
√

s − k0)θ
(

k0 − ε

√
s

2

)
.

After expanding the D′ integral and performing the d4x
integration one obtains the master formula in the familiar
Monte Carlo form [13,15,8]:

σ =
∞∑

n=0

1
n!

∫ 4∏
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d3qi

q0
i

(
n∏

i=1

d3ki

k0
i

S̃12(ki)θ
(

k0
i − ε

√
s

2

))

× δ(4)

(
p1 + p2 −

4∑
i=1

qi −
n∑

i=1

ki

)

× exp
(

2αB +
∫

d3k

k0 S̃12(k)θ
(

ε

√
s

2
− k0

))

×
[
β̄

(3)
0 (pR

r , qR
s ) +

n∑
i=1

β̄
(3)
1 (pR

r , qR
s , ki)

S̃12(ki)

+
n∑

i>j

β̄
(3)
2 (pR

r , qR
s , ki, kj)

S̃12(ki)S̃12(kj)

+
n∑

i>j>l

β̄
(3)
3 (pR

r , qR
s , ki, kj , kl)
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
 . (17)
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Reversing the above procedure we see that the ad hoc
introduction of the real emission weight W real

ECS of (8) into
(17) amounts to the modification of the D′ function:

D′ → D′
R =

∫
d3k

k0 S̃12(k)wR(k)e−ixkθ(
√

s − k0)

× θ

(
k0 − ε

√
s

2

)
. (18)

Our goal is now to find the corresponding virtual + soft
normalization weight that would exactly compensate for
the change of normalization caused in the master formula
by the replacement D′ → D′

R. It is evident that such a
weight should have the form

W norm
exact = exp(D′ − D′

R) (19)

= exp
(∫

d3k

k0 S̃12(k)(1 − wR(k))e−ixkθ

(
k0 − ε

√
s

2

))
.

Adding and subtracting the function ∆U(ε) of (10) we
obtain (again in the small ε limit)

W norm
exact = exp(∆D(ε) + ∆U(ε)),

∆D(ε) = D − DR, (20)

DR =
∫

d3k

k0 S̃12(k)wR(k)(e−ixk − θ(
√

s − k0)).

Let us now summarize the situation. We have constructed
the exact compensating weight W norm

exact . It would exactly
restore the normalization of the master formula changed
by the real emission weight W real

ECS. At the same time, how-
ever, this weight would ruin the entire MC algorithm. Be-
cause of its x dependence through the ∆D(ε) function,
the series of integrals over d4x leading to four-momenta-
conserving delta functions could not be performed now!
Therefore we have to modify the compensating weight.
We have to do it in such a way that
(1) the master formula remains independent of the dummy
parameter ε and
(2) the normalization of the master formula remains as
close as possible to the original normalization of (14).

To fulfill these requirements we observe that the whole
dependence on ε is contained in the ∆U(ε) integral. We
will not modify it and the condition (1) will be fulfilled.
The remaining contribution ∆D(ε) is up to the small term
(1 − wR(k)) identical to the original D function. As is
known [16], the role of the D function is to compensate
for the four-momentum non-conservation in the case of
emission of multiple high energy photons. Numerically it
is a very small correction, of the O(α2) LL-type. Therefore
within our accuracy we can drop this whole term and the
condition (2) will be fulfilled within an O(γ2) accuracy.
Upon including the correction factor exp((3/4)(γ̄t − γs)),
as described in Sect. 2.2, we arrive at the W norm

ECS of (10).

B Analytical integration

We show here how to calculate analytically the ∆U(ε)
function of (10). In the polar variables the dk0 integral

decouples, as S̃ab(k) is proportional to 1/(k0)2 and the
ratio of S̃ functions is independent of the scale of k0:

∆U(ε) =

√
s∫

ε
√

s/2

d3k

k0 S̃ab(k)(1 − wR(k))

= −
√

s∫
ε
√

s/2

dk0

k0

∫
dΩkF (a, b, c, d; Ωk)

= (γR − γ) log
ε

2
,

γR − γ =
∫

dΩkF (a, b, c, d; Ωk),

F (a, b, c, d; Ωk) (21)

= (k0)2S̃ab(k)
S̃aC(k) + S̃bD(k) + S̃aD(k) + S̃bC(k)

S̃ab(k) + S̃CD(k)
.

The evaluation of (γR − γ) simplifies if we note that this
integral is Lorentz-invariant. This is easiest to show for the
initial form of ∆U(ε) given in (10). The only apparently
Lorentz-variant part of (10) are the integration limits of
k0. Upon a Lorentz transformation with an arbitrary pa-
rameter β, the k0 transforms as

k0 → k0
′ =

k0 − �β�k√
1 − �β2

= k0A(Ωk);

A(Ωk) =
1 − |�β| cos ∠(�β�k)√

1 − �β2
, (22)

and the integral ∆U(ε) becomes

∆U(ε) =

A−1√
s∫

A−1ε
√

s/2

d3k′

(k′0)3
F (a′, b′, c′, d′; Ωk′). (23)

By the rescaling transformation k′ → Ak′, due to the iden-
tity Ωk′ = ΩAk′ and the scale invariance of the function
F (a, b, c, d; Ωk), the Lorentz invariance of ∆U(ε) becomes
transparent.

After substituting the definition of S̃ from (9) into
(21), we get∫

dΩkF (Ωk) = I1 + I2, (24)

I1 =
∫

dΩk(k0)2S̃ab(k)
S̃aC(k) + S̃aD(k)
S̃ab(k) + S̃CD(k)

(25)

=
∫

d cos θdφ
α

4π2

2(ab)
(nka)

× (ac)(nkd) − (ad)(nkc)
(ab)(nkc)(nkd) + (cd)(nka)(nkb)

, (26)

I2 =
∫

dΩk(k0)2S̃ab(k)
S̃bD(k) + S̃bC(k)
S̃ab(k) + S̃CD(k)
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= I1(a ↔ b, c ↔ d), (27)

where nµ
k = kµ/k0. The integral contains scalar products

of k with four different four-momenta a, . . . , d. With the
parameterization of (nku) = u0 −uz cos θ−ux sin θ cos φ−
uy sin θ sin φ the dφ integral in I1 is in principle solvable.
However, in the LAB frame, i.e. in the CMS frame of
(a, b), the (nkc)(nkd) product in the denominator would
lead to a fourth-order polynomial and its zeros would have
to be found numerically. This problem can be avoided by
changing the Lorentz frame to the CMS(a, c), i.e. the Breit
frame of (a, c)! The I2 integral would similarly be evalu-
ated in CMS(b, d) and then, due to the Lorentz invari-
ance of the integrals Ii we can simply add I1(a1, . . . , d1)+
I2(a2, . . . , d2). One must only remember that in both inte-
grals the a, . . . , d vectors became transformed to different
values (different frames), which we indicated above as a1,
a2, etc.

In the CMS(a, c) we have (nka) = a0 − a cos θ and
(nkc) = c0 + c cos θ, so that

I1 =
∫

d cos θ
α

2π2

(ab)
(nka)

∫
dφ

L · nk

M(θ) · nk

=
∫

d cos θ
α

2π2
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(28)

×
∫

dφ
L0 − Lz cos θ − Lx sin θ cos φ − Ly sin θ sin φ

M0 − Mz cos θ − Mx sin θ cos φ − My sin θ sin φ
,

Lµ = (ac)dµ − (ad)cµ, (29)
Mµ(θ) = (ab)(nkc)dµ + (cd)(nka)bµ. (30)

The integral over dφ can now be solved with the help of
a textbook formula (cf. e.g. [21] 2.558)

π∫
−π

dφ
l0 + l1 cos φ + l2 sin φ

m0 + m1 cos φ + m2 sin φ
= 2π

l1m1 + l2m2

m2
1 + m2

2

+
2π√

m2
0 − m2

1 − m2
2

(
l0 +

l1m1 + l2m2

m2
1 + m2

2
m0

)
; (31)

m2
0 > m2

1 + m2
2,

= 2πl0/m0; m1 = m2 = 0,
(32)

to give

I1 =
∫

d cos θ
α

π

(ab)
(nka)


LxMx + LyMy

M2
x + M2

y

(33)

+
L0 − Lz cos θ − LxMx + LyMy

M2
x + M2

y

(M0 − Mz cos θ)√
(M0 − Mz cos θ)2 − (M2

x + M2
y ) sin2 θ


 .

There is one technical point related to (33), concerning the
positiveness of the quantity under the square root in the
last term. It is guaranteed, however, by the positiveness of
the denominator M(θ) ·nk, which is a sum of dot products
of time- and light-like four-vectors: at its minimum (with
respect to φ) the M(θ) · nk is equal to the quantity in
question.

The remaining d cos θ integral we perform numerically.
The integral I2 is evaluated analogously to I1.
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